Copyright Micropelt

Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »

Window open detection is better called “temperature drop detection”
DWO has been implemented with the MVA EnOcean products and seems to work although we don’t have qualified feedback how reliable this function has been working in MVA004 and MVA005.

Temperature drops from tilted windows are definitely harder to detect than filly opened windows. Seasonal transition times with out-side temperature >10°C but active heating are also harder to detect than lower outside temperatures .

Detection values have been defined as relative gradient in Kelvin per unit time and:

13K / 1 hour = 1K / 5 Minutes = 0,43K / 2 Minutes

Die Fensteröffnungserkennung wird besser als „Temperaturabfallerkennung“ bezeichnet. DWO wurde mit den MVA EnOcean-Produkten implementiert und scheint zu funktionieren, obwohl wir kein qualifiziertes Feedback haben, wie zuverlässig diese Funktion in MVA004 und MVA005 gearbeitet hat.

Temperaturabfälle durch gekippte Fenster sind definitiv schwerer zu erkennen als vollständig geöffnete Fenster. Jahreszeitliche Übergangszeiten mit Außentemperatur >10°C aber aktiver Heizung sind ebenfalls schwerer zu erkennen als niedrigere Außentemperaturen.

Detektionswerte wurden als relativer Gradient in Kelvin pro Zeiteinheit definiert und:

13K / 1 Stunde = 1K / 5 Minuten = 0,43K / 2 Minuten

Measurement results product (in this case MVA005):

Window opened for 1h, outdoor 8ºC, valve 0%.

Ambient temperature °C and drop over 1 hour and relative temperature drop in K.

>1K temperature drop in 5 minutes interval → Condition is met.

Window opened for 1h, outdoor 8ºC, valve 0%.

Temperature gradient calculated over 5 minutes interval.

Gradient of -18K / hour → Condition in met.


Practical use case:

The window-open condition seems to be the event with the steepest gradient for any of the relevant sensors (103, 104, 105).

Turning off the radiator (100 -> 0 %) seems to be second.

Having a sensor outside the housing would be nice (less mass, faster reaction to quick changes), but a sensor inside the housing still sees a difference between window-open and other events.

The fastest part of the event is the first 10 … 15 minutes. When we allow this much time for detection, we are most certain that this is a window-open event.

  • No labels